!!! BİR YAZARIN WEB SİTESİNE GİTMEK İÇİN TIKLAYIN !!!
 
 

Ana Sayfa

İletişim

Ziyaretçi Defteri

Forum

Saklı sayfalar

Anketler

Bize Yardım Edin

 

REHBERLİK

Matematik Nedir?

Matematik Korkusu

Matematik neye yarar?

Matematik Karikatürler

Sınav Kaygısı

Kitap Okumanın Yararları

Ders Çalışma Programları

SBS Puan Hesaplama

Online Deneme Sınavı

Çarpım Tablosu

Bunları Biliyor Musunuz?

 

ÜNLÜLER

Ali KUŞÇU

Cahit ARF

Kurt GÖDEL

   
 

Zirve Matematik

Kümeler

KÜMELER

Herkes tarafından bilinen, elemanları iyi
tanımlanmış,birbirinden farklı nesnelerin veya şekillerin bir araya gelerek oluşturdukları
 topluluklar bütününe yada net bir şekilde tanımlanmış nesneler topluluğuna küme denir.Bazı,kimi,bir kısım gibi netlik ifade etmeyen ve kişisel yorumlara dayalı ifadeler küme belirtmez.Bazı şovmenler,Dünyanın en güzel kadını; bunlar küme belirtmez.

Evrensel küme; üzerinde işlem yapılan tüm kümeleri içine alan kümeye denir.

Tümleyen; A'nın tümleyeni veya tümleneni demek, A kümesinin dışında kalan bütün elemanların oluşturduğu kümedir.

Ayrık küme; kesişimleri boş kümedir.
İçiçe geçen A alt küme B olduğunda A  fark B kümesi kesinlikle boş kümedir.
Küme büyük harflerle gösterilir.

3 çeşit
gösterimi vardır.1) liste yöntemi 2) şema yöntemi
3) ortak özellik yöntemi.

Eleman sayıları
eşit olan kümelere denk kümeler denir. 

Eleman sayıları ve elemanları aynı olan kümelere eşit kümeler denir. 

Kümelerde birleşimi işlemi
demek elemanların hepsini alacaz yani birleştirecez. 

Kümelerde kesişim işlemi demek ortak kullanılanı
yani arada olanı alacaz. 

Kümelerde fark işlemi
demek örneğin A-B , A’da olan B’de olmayan elemanlar veya fark işaretinin sağındaki kümeyi her zaman
parmağımızla kapatıp diğer elemanları alacaz.

Alt küme demek bir küme diğer kümenin içinde olacak.
Örneğin haftanın günleri kümesinde Salı günü alt kümedir çünkü haftanın içindedir.
Boş küme her kümenin alt kümesidir.
Her küme kendisinin alt kümesidir.

A=(1,2,3,4,5,6) Kümesinin bazı alt kümeleri (1),(2),(1,2,5),(2,4,5,6),(1,2,3,4,5,6) .......
A = (1,2,3,a,b,5)
B = (3,d,e,5,7)
AÇB = (3,5)
AUB = (1,2,3,a,b,5,d,e,7)
A/B = (1,2,a,b)
s(AUB)=s(A)+s(B)-s(AÇB)
s(AUB)=s(A-B)+s(B-A)+s(AÇB)

Kümelerin Birleşimi

A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir ve A È B biçiminde gösterilir.

A È B = {x : x Î A veya x Î B}



Kümelerin Kesişimi

A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir 
ve A Ç B
biçiminde gösterilir.

A Ç B = {x : x Î A ve x Î B}



İKİ KÜMENİN FARKI

A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A B biçiminde gösterilir.

A – B = {x : x Î A ve x Ï B}

ELEMAN SAYISI

A, B, C herhangi birer küme olmak üzere,

  i) s(A È B) = s(A) + s(B) – s(A Ç B)

 ii) s(A È B È C) = s(A) + s(B) + s(C) – s(A Ç B) – s(A Ç C)

    – s(B Ç C) + s(A Ç B Ç C)

iii) s(A È B) = s(A – B) + s(A Ç B) + s(B – A)

ıv) a + b + c + d tane öğrencinin bulunduğu bir sınıfta voleybol oynayan öğrencilerin sayısı s(V) = b + c,

tenis oynayan öğrencilerin sayısı s(T) = a + b,

voleybol ve tenis oynayan öğrencilerin sayısı s(T Ç V) = b olsun.


Tenis veya voleybol oynayanların sayısı:

s(T È V) = a + b + c

Tenis ya da voleybol oynayanların sayısı:

s(T – V) + s(V – T) = a + c

Sadece tenis oynayanların sayısı:

s(T – V) = a

Tenis oynamayanların sayısı:

s(T) = c + d

Bu iki oyundan en az birini oynayanların sayısı:

s(T È V) = a + b + c

Bu iki oyundan en çok birini oynayanların sayısı:

s(A Ç B) = s(A È B) + s(T – V) + s(V – T) = d + a + c

Bu iki oyundan hiç birini oynamayanların sayısı:

s(A È B) = d

Kümelerle İlgili Çözümlü Örnek Sorular







Bu sayfa hakkındaki yorumlar:
Yorumu gönderen: cahit arf, 17.11.2013, 15:29 (UTC):
kümelerle ilgili sorular



Bu sayfa hakkında yorum ekle:
İsmin:
Mesajınız:
Bugün 18 ziyaretçi (45 klik) kişi burdaydı!

 

 

KONULAR

6.Sınıf Matematik Konuları

7.Sınıf Matematik Konu Başlıkları

8.Sınıf Matematik Konu Başlıkları

Doğru Parçası Paradoksu

Matematiği Görselleştirme ve The Geometer's Sketchpad

Aritmetiğin Hataları

Depremin Matematiği

Collatz Teoremi

Matematik Ders Videoları

Kümeler

Geometrik Cisimlerin Alanları

Ebob-Ekok

Kareköklü Sayılar

Sayı Örüntüleri

Tam Sayılar

Ölçüler

Öteleme Ve Süsleme

Üstlü Sayılar

Cebirsel İfadeler

Olasılık

Üçgenler

Asal Sayıların Dağılımı Teorem Haline Getirilmiş

Pi Sayısının Tarihçesi

Oran Ve Orantı

Fraktallar

Altın Oran

Matematikte Sağdan Sola Okuma

Eşitsizlikler

Grafikler

Standart Sapma

 

SINAVLAR

SBS Rehberlik

SBS Soru Tahminleri

2009 Matematik Sbs Soruları

2008 Matematik Sbs Soruları

ÖDEVLERDE YARDIM

İlköğretim Okulları Matematik Performans Görevi ile Proje Ödevi Konuları ve Taslakları

Matemetik Nerede?

 

TESTLER

Sağ Ve Sol Beyin Testi

 

ARŞİV

Matematik

Türkçe

 
 
----------------
matematikCafe

 

 

 

DetayToplist Hit Kazan
 
 
   

Hazırlayan: www.zhsahin.com

 

=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=